Feasibility of magnetic resonance redox imaging at low magnetic field: comparison at 1 T and 7 T.

نویسندگان

  • Mizuki Nakamura
  • Sayaka Shibata
  • Toshihide Yamasaki
  • Megumi Ueno
  • Ikuo Nakanishi
  • Ken-Ichiro Matsumoto
  • Tadashi Kamada
  • Ken-Ichi Yamada
  • Ichio Aoki
چکیده

The effect of different static magnetic field strengths, 1 T or 7 T, on the quality of nitroxyl radical-based magnetic resonance redox imaging (MRRI) was examined. A stable nitroxyl radical, 3-methoxycarbonyl-2,2,5,5-tetramethylpyrrolidine-N-oxyl (MC-PROXYL), was used as a T1 contrast agent. Phantoms and animals were scanned at 1 T and 7 T using a similar gradient echo sequence. The quality of T1-weighted images and susceptibility of T1-weighted signals were compared. The nitroxyl radical-based T1-weighted signal enhancement ratio was higher at 1 T compared with at 7 T when the identical phantom was scanned using a similar gradient echo sequence. The gradient echo scanning at 7 T was sensitive to movement and/or flux of the sample solution, which could result in the distortion of baseline T1-weighted signals. No such wobbling of the signal was observed when the experiment was done at 1 T. The detection at the lower field is less affected by voltex flow in the sample, much stable T1-weighted signal detection is available at the lower field. The visual characteristics of in vivo nitroxyl decay profiles were similar between the 1 T and 7 T experiments, except noises were large at 1 T. The correlation trends of in vivo decay constants among brain regions also similar between 1 T and 7 T experiments. Nitroxyl radical-based MRRI could be an adequate theranostic tool when performed on clinically popular low magnetic field MRI instruments.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The modeling of induced current density in eyes from static magnetic fields produce by MR scanner

Introduction: Staff and patient Movement in static magnetic field MRI scanner induces current density in the human tissues, so cause biologic effects in people. The aim of this study was the Modelling of current density induced by moving individual with different velocities in static magnetic field of magnetic resonance imaging. Materials and Methods: current ...

متن کامل

Magnetic resonance imaging of feline eye

The purpose of this study was to investigate magnetic resonance imaging (MRI) of the normal feline eyeand optic nerves using T1-weighted and T2-weighted images. A total of 6 healthy female domestic short haircats age 2-2.5 years and weighing 3.2 ± 0.4 kg were selected. Magnetic resonance imaging data werecollected using GEMSOW (Philips) at a magnetic field strength of 1.5 T. Dorsal, sagittal, a...

متن کامل

The effect of earth magnetic field on the function of nuclear medicine imaging systems (SPECT)

Background: The nuclear medicine systems are very sensitive to the variation of the magnetic field. Photomultiplier tubes amplify low energy light signal and change it into electrical current. Low magnetic field can produce some variations in uniformity and special resolution of SPECT systems. In this study, we tried to evaluate the effects of magnetic field on the function of nuclear medic...

متن کامل

DNA Damages on Blood Cells After Cardiac Magnetic Resonance Imaging

Introduction: Along with the increased use of cardiac imaging at clinics there is increased attention to the potential risks related to the methods used like magnetic resonance (MR) and it cannot be ruled out that MR can alter DNA structure. The aim of this review is to assess the impact of routine cardiac magnetic resonance (CMR) scanning on DNA damages in human T lymphocytes....

متن کامل

Feasibility of ultrahigh field (7 Tesla) human cardiovascular magnetic resonance imaging to assess cardiac volumes and mass validated against 1.5 T and 3T field strengths

Introduction Ultrahigh (7T) cardiovascular magnetic resonance imaging (CMR) is an emerging field of clinical research because theoretically higher signal to noise offers potential benefits for imaging coronaries, perfusion and spectroscopy. We report the first comparison of CMR at 1.5 T, 3 T and 7 T field strengths using steady state free precession (SSFP) and fast low angle shot (FLASH) cine s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • American journal of translational research

دوره 9 10  شماره 

صفحات  -

تاریخ انتشار 2017